Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mol Aspects Med ; 77: 100943, 2021 02.
Article in English | MEDLINE | ID: covidwho-1051827

ABSTRACT

The health of the individual and the population in general is the result of interaction between genetics and various environmental factors, of which diet/nutrition is the most important. The focus of this paper is on the association of high n-6 PUFA or low n-3 PUFA due to genetic variation and/or dietary intake, with changes in specialized pro-resolving mediators (SPMs), cytokine storm, inflammation-resolution and Covid-19. Human beings evolved on a diet that was balanced in the n-6 and n-3 essential fatty acids with a ratio of n-6/n-3 of 1-2/1 whereas today this ratio is 16/1. Such a high ratio due to high amounts of n-6 fatty acids leads to a prothrombotic and proinflammatory state and is associated with obesity, diabetes, cardiovascular disease, and some forms of cancer. In addition to the high intake of n-6 fatty acids that increases inflammation there is genetic variation in the biosynthesis of n-6 linoleic acid (LA) to arachidonic acid (ARA) and of linolenic (ALA) to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Present day humans have two common FADS haplotypes that differ dramatically in their ability to generate long-chain fatty acids. The more efficient, evolutionary derived haplotype increases the efficiency of synthesizing essential long-chain fatty acids from precursors and could have provided an advantage in environments with limited access to dietary long-chain fatty acids ARA, EPA and DHA. In the modern world this haplotype has been associated with lifestyle-related diseases, such as cardiovascular disease, obesity, diabetes, all of which are characterized by increased levels of inflammation. African Americans and Latino populations have increased susceptibility and higher death rates from SARS-CoV-2 than whites. These populations are characterized by increased numbers of persons (about 80%) that are fast metabolizers, leading to increased production of ARA, as well as poor intake of fruits and vegetables. The combinations of fast metabolism and high n-6 intake increases their inflammatory status and possibly susceptibility of SARS-CoV-2. In vitro and human studies indicate that the specialized pro-resolving mediators (SPM) produced from the n-3, EPA and DHA influence the resolution of inflammation, allowing the tissues to return to function and homeostasis. The SPMs each counter-regulate cytokine storms, as well as proinflammatory lipid mediators via NFκB and inflammasome down regulation and reduce the proinflammatory eicosanoids produced from ARA. The nutritional availability of dietary n-3 fatty acids from marine oils enriched with SPM intermediate precursors, along with increasing local biosynthesis of SPMs to functional concentrations may be an approach of value during SARS-CoV2 infections, as well as in prevention, and shortening their recovery from infections. It is evident that populations differ in their genetic variants and their frequencies and their interactions with the food they eat. Gene-nutrient interactions is a very important area of study that provides specific dietary advice for individuals and subgroups within a population in the form of Precision Nutrition. Nutritional science needs to focus on Precision Nutrition, genetic variants in the population and a food supply composed of Nutrients that have been part of our diet throughout evolution, which is the diet that our genes are programmed to respond.


Subject(s)
COVID-19/diet therapy , COVID-19/genetics , COVID-19/metabolism , Docosahexaenoic Acids/metabolism , Eicosanoids/metabolism , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/metabolism , Fatty Acids, Essential/metabolism , Fatty Acids, Omega-3/metabolism , Genetic Predisposition to Disease/genetics , Haplotypes , Humans , Inflammation/diet therapy , Inflammation/genetics , Inflammation/metabolism , Linoleic Acid/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/pathogenicity
2.
Int J Environ Res Public Health ; 17(11)2020 06 10.
Article in English | MEDLINE | ID: covidwho-622436

ABSTRACT

The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kß (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Diet , Inflammation/immunology , Metabolic Diseases/immunology , Pneumonia, Viral/immunology , Risk Reduction Behavior , COVID-19 , Coronavirus Infections/diet therapy , Coronavirus Infections/prevention & control , Humans , Inflammation/diet therapy , Inflammation/prevention & control , Metabolic Diseases/diet therapy , Metabolic Diseases/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/diet therapy , Pneumonia, Viral/prevention & control , Primary Prevention , SARS-CoV-2
4.
Nutrition ; 81: 110900, 2021 01.
Article in English | MEDLINE | ID: covidwho-691202

ABSTRACT

The new coronavirus associated with severe acute respiratory syndrome (SARS-CoV-2), surprisingly, does not affect only the lungs. The severe response to SARS-CoV-2 appears to include a "cytokine storm," which indicates a state of hyperinflammation and subsequent dysfunction of multiple organs and tissues in the most severe cases. This could be the reason why populations at the highest risk for death from the SARS-CoV-2 infection-induced disease (coronavirus disease 2019 [COVID-19]) are those suffering from chronic low-grade inflammation, but prone to hyperinflammation. This includes individuals of advanced age and those with obesity, type 2 diabetes, hypertension, and metabolic syndrome. Inflammation resolution is strongly dependent on lipid mediators, the specialized pro-resolution mediators (SPMs). ω-3 polyunsaturated fatty acids (ω-3 PUFAs) are precursors of very potent SPMs, including resolvins, protectins, and maresins. Additionally, they are associated with a less aggressive inflammatory initiation, after competing with ω-6 fatty acids for eicosanoid synthesis. Therefore, it makes sense to consider the use of ω-3 PUFAs for clinical management of COVID-19 patients. ω-3 PUFAs may be given by oral, enteral, or parenteral routes; however, the parenteral route favors faster incorporation into plasma phospholipids, blood cells, and tissues. Here, we discuss these aspects to propose the parenteral infusion of ω-3 PUFAs as adjuvant immunopharmacotherapy for hospitalized patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Fish Oils/administration & dosage , COVID-19/epidemiology , COVID-19/immunology , Chemotherapy, Adjuvant , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Fatty Acids, Omega-3/administration & dosage , Humans , Inflammation/diet therapy , Inflammation/immunology , Infusions, Parenteral , Models, Biological , Nutritional Physiological Phenomena , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL